

Industrial Decarbonization Workshop - Applications

Prof. Jack Brouwer Director

Integrated SOEC + Direct Reduced Iron (DRI) for Green Steel

Team

A Sempra Energy utility

Advisors

NATIONAL FUEL CELL RESEARCH CENTER

U.S. DOE Supported HySteel Project Goals

Advance, demonstrate and optimize a thermally and chemically integrated Solid Oxide Electrolysis Cell (SOEC) system, as co-producer of H₂ and O₂, with a Direct Reduction Iron (DRI) plant at 1 ton/week of product scale.

Created by I Putu Kharismayadi

Specific primary energy consumption <8 GJ/t_{DRI} Electric-tohydrogen efficiency for an SOEC stack of <35 kWh/kg of H₂ produced Specific CO₂
emissions rate <
90 kg CO₂/ton
DRI product w/o
oxyfuel

Pilot system at production capacity of 1 ton/week and TRL 4

Scale-up design for a 2 Mton/year DRI product capacity

Total capital specific cost < \$200/ton equivalent pigiron per year

Total Project Budget: \$5,664,862.00 – Total DOE Share: \$4,043,993.00 – Total Cost Share: \$1,620,869.00

HySteel Relevance & Potential Impact

Direct Industrial CO2 emissions

Steel industry:
World total 1869 Mton_{steel}
6-6.5% of total anthropogenic
CO₂ emissions

Blast Furnace + Basic Oxygen Furnace (BF+BOF)
Hydrogen Direct Reduction (HDR)
Hybrid Hydrogen Direct Reduction (Hybrid HDR)

Chemicals and Petrochemicals 13% Pulp and Paper 3% Aluminium 3%	Other Industry 26% Cement 27%	ron and Steel 28%
□ Iron and Steel□ Aluminium□ Chemicals and Pet	trochemicals	■ Cement■ Pulp and Paper■ Other Industry
WorldSteel association	n – World steel ir	n figures 2020

	Units	BF+BOF	HDR	Hybrid HDR
Energy intensity	GJ/ton _{crude steel}	19-20	<8	<9
Specific emissions	ton _{CO2} /ton _{crude steel}	1.8-1.9	<0.09	<0.09
Specific cost	\$/ton _{eq pig-iron} yr	210	200*	200*
Electric load	GJ _{el} /ton _{crude steel}	-	<7	<7
*At 2 Mton/yr scale				

	Units	Ref SOEC	HDR	Hybrid HDR
Hydrogen Eff.	kWh/kg	40	35	-
Syngas Eff.	kWh/kg	45	-	40
Oxygen Eff.	kWh/kg	6.5	<5	<5

International Energy Agency (IEA)

HySteel Project Work Packages

WP1: System integration and thermodynamic analysis

- Plant conceptualization and thermodynamic analysis
- DRI kinetics at high H₂ concentrations
- Assessment of product quality

WP2: SOEC module design and control

- SOEC module sizing and nominal load design
- SOEC thermal management
- SOEC control strategy development

WP3: SOEC prototype design, construction and testing

- Testing in relevant conditions for DRI operation
- SOEC prototype design
- SOEC prototype fabrication

- WP4: Design and characterization of pilot-scale SOEC PRI process
- Design and commissioning of DRI simulator
- Integration and commissioning of SOEC module into DRI test bench
- Characterization and testing of integrated SOEC+DRI system

Pressure gauge

OEC Physical Inputs: Power supply profile Current density Temperature

- WP5: Techno-economic optimization of full scale SOEC+DRI layouts
- Economic and market background build-up
- Design and Technoeconomic assessment of full-scale system
- Comparative assessment with state-of-the-art

Operating temperature Size, furnace configuration

Vessels /Piping /Valves

Sector coupling assessment

(T, p, flow rate,

Hydrogen Direct Reduction (HDR) concept

Solid Oxide Electrolyzers & Fuel Cells

Can achieve much higher round-trip efficiency

- 0% CO2 10% H2
- 60% CO2 10% H2
- PEMEC

SOFC & SOEC systems not known for highly dynamic operation

Solid Oxide Electrolysis Cell/Stack Model

High Temperature Electrolysis Thermodynamics

- Three possible operating conditions:
 - 1- Thermoneutral (V = VTN) → No heating or cooling
 - 2- Exothermic (V > VTN) → Cooling is required
 - 3- Endothermic (V < VTN) → Heating is required

Wendel, C.H., Kazempoor, P. and Braun, R.J., Journal of Power Sources, 2016.

Key Simplification: Limited Geometric Resolution

- Planar SOFC with 10 Discrete Computational Nodes
 - Anode Gas, Cathode Gas, Cell EEA, Separator Plates

- Reformer Module with 5 Discrete Computational Nodes
 - Anode Off-Gas Recycle, Fuel Mix, Combustor HX, Catalyst Bed

Sample Dynamic Conservation Equations

Species Conservation

$$V \frac{dC_i}{dt} = N_{i_{inlet}} - N_{i_{outlet}} + R_i$$

Momentum Conservation

$$V \frac{d(\rho \overline{v})}{dt} = P_{inlet} A_{inlet} - P_{outlet} A_{outlet} - F_s$$

Nernst Equation

$$E = E^{\circ} + \frac{R_u T}{nF} \ln \left[\frac{[y_{H2}][y_{O2}]^{1/2} [y_{CO2,c}] P^{1/2}}{[y_{H2O}][y_{CO2,a}]} \right], P_c = P_a = P$$

Electrochemical Losses

$$L_{R} = R_{cell} i$$

$$L_{A} = \frac{R_{u}T}{n\alpha F} \ln(i/i_{o})$$

$$L_{C} = -\frac{R_{u}T}{nE} \ln(1 - i/i_{L})$$

Cell Voltage

$$Vcell = E - L_R - L_C - L_A$$

Sample Mass Conservation Equations

$$\begin{cases} C_{out} = \frac{P_{out}}{RT_{out}} \\ N_{out} = N_{in} + N_R - \frac{d(C_{out}V)}{dt} \\ (X_{H2})_{out} = \frac{N_{in}(X_{H2})_{in} + R_{H2} - \frac{d(C_{H2}V)}{dt}}{N_{out}} \\ (X_{CO2})_{out} = \frac{N_{in}(X_{CO2})_{in} + R_{CO2} - \frac{d(C_{CO2}V)}{dt}}{N_{out}} \\ (X_{H2O})_{out} = \frac{N_{in}(X_{H2O})_{in} + R_{H2O} - \frac{d(C_{H2O}V)}{dt}}{N_{out}} \\ (X_{N2})_{out} = \frac{N_{in}(X_{N2})_{in} - \frac{d(C_{N2}V)}{dt}}{N_{out}} \end{cases}$$

Roberts, R., Mason, J., Jabbari, F., Brouwer, J., Samuelsen, S., Liese, E. and Gemmen, R., <u>ASME Paper Number 2003-GT-38774</u>, 2003.

SOEC System Model & Control Strategies

Controlled Parameter	Manipulated Variable	Controller Type
Stack Average Temperature	Air Electric Heater Power	PI Feedback Loop Controller
Stack Temperature Gradient	Blower Power	PI Feedback Loop Controller
H ₂ at Cathode Inlet	Valve Position	PI Feedback Loop Controller
Steam Utilization	Water Pump power	Feedforward Controller
Power Demand	Current	Feedforward Controller

Dynamic Operation of SOEC System

Sunny

UCI Microgrid Simulation

Concentrated Solar + Solid Oxide Electrolysis

 Integrating concentrated solar energy with SOEC

heater

KCI-MgCl₂ H₂O H₂,H₂O Air

Concentrated Solar + Solid Oxide Electrolysis

Integrating concentrated solar energy with solid oxide electrolysis

Integrated CSP + Cement – Plant Layout

Design conditions:

- Design point DNI: 950 W/m2
- Steady-state thermal power:58MW
- Solar multiple: 3
- Storage capacity: 870 MWh

CSP-Integrated Cement Plant Locations

- Five sites investigated
 - Two in California
 - One in Texas
 - One in Alabama
 - One in Pennsylvania

2019 PSM Full Disc DNI (kWh/sq.m/day)

- <- 4.0 <- 4.0 - 4.5 <- 4.5 - 5.0
- 5.0 5.5
- 5.5 6.0
- 6.0 6.5
- 6.5 7.0
- 7.0 7.5
- ✓ | > 7.5
 - Highest DNI in California
 - Lowest DNI in Pennsylvania

Average Monthly Solar Profiles in Locations

- Heat absorbed profiles for March, June, Sept., Dec.
 - Proportional to DNI profile
- Sudden decrease in afternoon of June for CA plants
 - Due to low heliostat field optical efficiency
- Amount of calcined clinker is proportional to heat absorbed
 - Highest solar-calcined clinker production in the SoCal plant
 - Lowest solar-calcined clinker production in the PA plant.

CSP + Calciner/Clinker Storage – Dynamic Operation

- Solar calciner and storage operation
 - SoCal plant vs. Pennsylvania plant
 - More CO₂ reduction for the plant in SoCal.

NATIONAL FUEL CELL RESEARCH CENTER

NFCRC

Annual Results

- Percent solarization and reduction in the emissions
 - 70% solarization for the plant in SoCal
 - ✓ Annual DNI = 3000 kWh/sq.m
 - 40% solarization for the plant in PA
 - ✓ Annual DNI = 1500 kWh/sq.m

Location	Percent CO ₂ emissions reduction (%)	Saved amount of coal (tonne)
SoCal	15.1	54,445
NorCal	12.6	45,444
PA	8.63	31,116
AL	9.99	36,038
TX	10.69	38,542

Comparison to Alternatives for Cement Decarbonization

CAL: Calcium Looping

MAL: Membrane-assisted CO2 Liquefaction

CAP: Chilled Ammonia Process

MEA: Monoethanolamine

CSP integration suitable in California, Arizona, Nevada, and New Mexico

Annual DNI greater than 2200 kWh/sq.m

Industrial Decarbonization Workshop - Applications

Prof. Jack Brouwer Director